Whole genome sequencing (WGS) of Mycobacterium tuberculosis has rapidly evolved from a research tool to a clinical application for the diagnosis and management of tuberculosis and in public health surveillance. This evolution has been facilitated by the dramatic drop in costs, advances in technology, and concerted efforts to translate sequencing data into actionable information. There is however a risk that, in the absence of a consensus and international standards, the widespread use of WGS technology may result in data and processes that lack harmonisation, comparability and validation. In this review, we outline the current landscape of WGS pipelines and applications and set out best practices for M. tuberculosis WGS, including standards for bioinformatics pipelines, curated repository of resistance-causing variants, phylogenetic analyses, quality control processes, and standardised reporting. 1. Introduction Mycobacterium tuberculosis complex (Mtbc) pathogens are collectively the top infectious disease killer globally, causing 10 million new tuberculosis (TB) cases annually 1. Increasingly, 95 new TB cases are already resistant to rifampicin and isoniazid (termed multidrug resistance; 96 MDR-TB), the key first line drugs 1. Tackling the spread and drug resistance burden of this pathogen requires concerted global effort in prevention, diagnosis, treatment and surveillance.