2023
DOI: 10.1007/s13593-022-00856-7
|View full text |Cite
|
Sign up to set email alerts
|

Enabling soil carbon farming: presentation of a robust, affordable, and scalable method for soil carbon stock assessment

Abstract: The main hurdle in instrumentalizing agricultural soils to sequester atmospheric carbon is the development of methods to measure soil carbon stocks which are robust, scalable, and widely applicable. Our objective is to develop an approach that can help overcome these hurdles. In this paper, we present the Wageningen Soil Carbon STOck pRotocol (SoilCASTOR). SoilCASTOR uses a novel approach fusing satellite data, direct proximal sensing-based soil measurements, and machine learning to yield soil carbon stock est… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(2 citation statements)
references
References 69 publications
0
0
0
Order By: Relevance
“…Een recent ontwikkelde methodiek die gebruik maakt van sensor fusing (satelliet-en sensormetingen) lijkt perspectiefvol voor toepassing op bedrijfsniveau (Van der Voort et al, 2023).…”
Section: Discussieunclassified
“…Een recent ontwikkelde methodiek die gebruik maakt van sensor fusing (satelliet-en sensormetingen) lijkt perspectiefvol voor toepassing op bedrijfsniveau (Van der Voort et al, 2023).…”
Section: Discussieunclassified
“…Zhao et al combined the PLUS and InVEST models to predict regional carbon storage [25]. Van der Voort et al combined the SoilCASTOR model with remote sensing and machine learning to improve the accuracy of soil carbon calculations [26].…”
Section: Introductionmentioning
confidence: 99%