The 'escape from flatland' concept has gained significant traction in modern drug discovery, emphasizing the importance of three-dimensional molecular architectures, which serve as saturated bioisosteres of benzenoids. Bicyclo[1.1.0]butanes (BCBs), known for their high ring strain and numerous reactivities, offer a simple yet effective method for synthesizing these bicyclic frameworks. Although (3 + 2) annulations involving BCBs have been extensively studied, the 1,3-dipolar cycloaddition of BCBs leading to (3 + 3) annulation has received limited attention. Herein, we report the Lewis acid-catalyzed 1,3-dipolar cycloaddition of BCBs with isatogens allowing the synthesis of biologically relevant tetracyclic 2-oxa-3-azabicyclo[3.1.1]heptanes. Moreover, the reaction can be performed in a one-pot process by the in situ generation of isatogens from 2-alkynylated nitrobenzenes. Additionally, preliminary mechanistic and photophysical studies of the (3 + 3) annulated products and experiments toward the asymmetric version of this reaction are also provided.