Catalysts that can promote acyl transfer processes are important to enantioselective synthesis and their development has received significant attention in recent years. Despite noteworthy advances, discovery of small-molecule catalysts that are robust, efficient, recyclable and promote reactions with high enantioselectivity can be easily and cost-effectively prepared in significant quantities (that is, >10 g) has remained elusive. Here, we demonstrate that by attaching a binaphthyl moiety, appropriately modified to establish H-bonding interactions within the key intermediates in the catalytic cycle, and a 4-aminopyridyl unit, exceptionally efficient organic molecules can be prepared that facilitate enantioselective acyl transfer reactions. As little as 0.5 mol% of a member of the new catalyst class is sufficient to generate acyl-substituted all-carbon quaternary stereogenic centres in quantitative yield and in up to 98:2 enantiomeric ratio (er) in 5 h. Kinetic resolution or desymmetrization of 1,2-diol can be performed with high efficiency and enantioselectivity as well.