Herein, we report a diversity-oriented-synthesis (DOS) approach for the synthesis of biologically relevant molecular scaffolds. Our methodology enables the facile synthesis of fused N-heterocycles, spirooxoindolones, tetrahydroquinolines, and fused N-heterocycles. The two-step sequence starts with a chiral-bicyclic-lactam-directed enolate-addition/substitution step. This step is followed by a ring-closure onto the built-in scaffold electrophile, thereby leading to stereoselective carbocycle- and spirocycle-formation. We used in silico tools to calibrate our compounds with respect to chemical diversity and selected drug-like properties. We evaluated the biological significance of our scaffolds by screening them in two cancer cell-lines. In summary, our DOS methodology affords new, diverse scaffolds, thereby resulting in compounds that may have significance in medicinal chemistry.