To enable the selection of more accurate computational methods for the future theoretical exploration of the reaction mechanism of Ir-catalyzed olefin hydrogenation, we compared high-level ab initio coupled cluster and DFT calculations with a simplified model of Pfaltz's Ir/P,N-type catalyst for all four previously proposed Ir(I) /Ir(III) and Ir(III) /Ir(V) mechanisms. Through the systematic assessment of the DFT performances, the DFT empirical dispersion correction (DFT-D3) is found to be indispensable for improving the accuracy of relative energies between the Ir(I) /Ir(III) and Ir(III) /Ir(V) mechanisms. After including the DFT-D3 correction, the three best performing density functionals (DFs) are B2-PLYP, BP86, and TPSSh. In these recommended DFs, the computationally more expensive double-hybrid functional B2-PLYP-D3 has a balanced and outstanding performance for calculations of the reaction barriers, reaction energies, and energy gaps between different mechanisms, whereas the less costly BP86-D3 and TPSSh-D3 methods have outstanding, but relatively less uniform performances.