Patterning of solid surfaces with organic molecules has been recognized as a promising method to create functional 2D matrices with tunable structure and properties. In this work we use the lattice Monte Carlo simulations to study chiral pattern formation in adsorbed systems comprising simple molecular building blocks differing in shape. To that end we consider five-membered rigid isomers whose composite segments can occupy vertices of a triangular lattice and interact with short-range (nearest neighbors) forces. Our main focus is on those molecules which are prochiral, that is they can adopt mirror-image planar configurations when adsorbed. Moreover, the effect of orientational in-plane confinement of the molecules, which reflects their coupling with an external directional field, on the structure formation and chiral resolution in 2D is explored. The obtained results demonstrate that the confinement imposed on the surface enantiomers can induce their resolution and formation of extended homochiral domains. However, it is also shown that for certain molecular shapes the confinement can produce mixed racemic crystals instead of the homochiral assemblies. The insights from our simulation studies can be helpful in preliminary screening of molecular libraries to select optimal building blocks able to self-assembly into chiral 2D patterns with predefined architecture.