The origin of biomolecular homochirality continues to be one of the most fascinating aspects of prebiotic chemistry. Various amplification strategies for chiral compounds to enhance a small chiral preference have been reported, but none of these involves phosphorylation, one of natures essential chemical reactions. Here we present a simple and robust concept of phosphorylation-based chiral amplification of amines and amino acids in water. By exploiting the difference in solubility of a racemic phosphoramidate and its enantiopure form, we achieved enantioenrichment in solution. Starting with near racemic, phenylethylamine-based phosphoramidates, ees of up to 95 % are reached in a single amplification step. Particularly noteworthy is the enantioenrichment of phosphorylated amino acids and their derivatives, which might point to a potential role of phosphorus en-route to prebiotic homochirality.