Curcumin nanoformulations for intravenous injection have
been developed
to offset poor absorption, biotransformation, degradation, and excessive
clearance associated with parenteral delivery. This review investigates
(1) whether intravenous nanoformulations improve curcumin pharmacokinetics
(PK) and (2) whether improved PK yields greater therapeutic efficacy.
Standard PK parameters (measured maximum concentration [
C
max
], area under the curve [AUC], distribution volume
[
V
d
], and clearance [CL]) of intravenously
administered free curcumin in mice and rats were sourced from literature
and compared to curcumin formulated in nanoparticles, micelles, and
liposomes. The studies that also featured analysis of pharmacodynamics
(PD) in murine cancer models were used to determine whether improved
PK of nanoencapsulated curcumin resulted in improved PD. The distribution
and clearance of free and nanoformulated curcumin were very fast,
typically accounting for >80% curcumin elimination from plasma
within
60 min. Case-matched analysis demonstrated that curcumin nanoencapsulation
generally improved curcumin PK in terms of measured
C
max
(
n
= 27) and AUC (
n
= 33), and to a lesser extent
V
d
and
CL. However, when the data were unpaired and clustered for comparative
analysis, only 5 out of the 12 analyzed nanoformulations maintained
a higher relative curcumin concentration in plasma over time compared
to free curcumin. Quantitative analysis of the mean plasma concentration
of free curcumin versus nanoformulated curcumin did not reveal an
overall marked improvement in curcumin PK. No correlation was found
between PK and PD, suggesting that augmentation of the systemic presence
of curcumin does not necessarily lead to greater therapeutic efficacy.