“…Compared to their organic (dendritic macromolecules) or inorganic counterparts (zeolites), MOFs can be functionalized to give ubiquitous ability, as the ligand-producing variety of MOFs can be postmodified, or alternatively, the ligand itself may possess special functional groups [22,23]. In addition to their diverse and versatile framework, MOFs also display extraordinary properties, such as high surface areas, ultrahigh porosity, and thermal stability [24,25], which make them a potential candidate for applications in areas such as gas storage and separation [26,27,28,29,30,31], catalysis [32,33], chemical sensors [34,35], drug delivery, and biomedical imaging [36,37,38,39,40,41]. In this regard, Yaghi et al [42] pioneeringly synthesized a series of MOFs with an exceptionally high surface area (4500 m 2 ·g −1 ) and extra-large pores capable of binding polycyclic organic guest molecules.…”