2022
DOI: 10.48550/arxiv.2204.06242
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Encoding Domain Knowledge in Multi-view Latent Variable Models: A Bayesian Approach with Structured Sparsity

Abstract: Many real-world systems are described not only by data from a single source but via multiple data views. For example, in genomic medicine, a patient can be described by data from different molecular layers. This raises the need for multi-view models that are able to disentangle variation within and across data views in an interpretable manner. Latent variable models with structured sparsity are a commonly used tool to address this modeling task but interpretability is cumbersome since it requires a direct insp… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?