“…Second, undamaged chromatin also becomes more dynamic during DSB repair, albeit to a lesser extent than repair sites ( Figure 1B ) ( Chiolo et al, 2011 ; Krawczyk et al, 2012 ; Miné-Hattab and Rothstein, 2012 ; Seeber et al, 2013 ; Lottersberger et al, 2015 ; Strecker et al, 2016 ; Herbert et al, 2017 ; Lawrimore et al, 2017 ; Miné-Hattab et al, 2017 ; Caridi et al, 2018a ; Smith et al, 2019 ; Zada et al, 2019 ). The significance of the genome-wide increase in nuclear exploration is still under debate, but this response might increase the frequency of DNA contacts to facilitate homology search ( Gehen et al, 2011 ; Neumann et al, 2012 ; Mine-Hattab and Rothstein, 2013 ; Amitai and Holcman, 2018 ), or reflect chromatin relaxation to promote access for repair ( Kruhlak et al, 2006 ; Ziv et al, 2006 ; Seeber et al, 2013 ; Delabaere and Chiolo, 2016 ). Third, repair sites undergoing HR aggregate into larger units, or “clusters” ( Figure 1C ) ( Lisby et al, 2003 ; Aten et al, 2004 ; Kruhlak et al, 2006 ; Chiolo et al, 2011 , 2013 ; Krawczyk et al, 2012 ; Neumaier et al, 2012 ; Cho et al, 2014 ; Caron et al, 2015 ; Aymard et al, 2017 ; Caridi et al, 2018a ; Schrank et al, 2018 ; Oshidari et al, 2019a ; Waterman et al, 2019 ) (reviewed in Chiolo et al, 2013 ; Guénolé and Legube, 2017 ; Schrank and Gautier, 2019 ), likely to facilitate DSB signaling and resection, e.g., by increasing the local concentration of checkpoint and repair proteins ( Chiolo et al, 2013 ; Schrank et al, 2018 ; Kilic et al, 2019 ; Oshidari et al, 2019a ; Schrank and Gautier, 2019 ).…”