Clean, safe, and renewable energy sources such as nuclear fusion comprise important technological challenges, including research, characterization and manufacture of advanced materials for future fusion reactors. Modified ferritic-martensitic steels with reduced radioactive activity (RAFM), especially Eurofer-97 steel, are among worldwide references in the nuclear field for their unique properties. The scope of this Thesis is to evaluate the microstructural (thermal) stability in ferritic-martensitic Eurofer-97 after annealing within a wide range of temperatures. Themodinamic calculations as well as dilatometric tests were used to determine the main phase transformation temperatures. The microstructural stability of this steel was followed by isothermal annealing between 200 and 1350°C after cold rolling to 40, 70, 80 and 90% reductions in thickness. The mechanical stability in the Eurofer-97 was assessed by Vickers microhardness measurements. Representative samples for each metallurgical condition were characterized by scanning electron microscopy, transmission electron microscopy, atom probe tomography, and DC-magnetization tests. Both texture and microtexture were evaluated by X-ray diffraction and electron backscattered diffraction (EBSD) techniques. Recovery, primary recrystallization, and abnormal grain growth (secondary recrystallization) processes have been observed at temperatures below 800°C. The amount of abnormally grown grains depends on the amount of previous cold rolling. The hypothesis for the most probable mechanism responsible for abnormal grain growth is based on the advantage size acquired by nuclei with misorientations above 45º surrounding their neighboring grains, even in regions where primary recrystallization was incomplete. The texture developed after abnormal grain growth has components belonging to α-and γ-fibers with predominance of {111}<110>, {111}<112>, {100}<110> e {110}<001> components. The martensite transformation takes place when this steel is annealed above 800°C causing an increase of hardness, significant changes in microstructure, and texture weakening. The martensitic sructure depends very much on both austenitization temperature and initial austenitic grain size. The results of chemical analyses of stable particles present in samples annealed below 800 o C were used to validate the thermodynamic calculations provided by Thermo-Calc.