The endocannabinoid (EC) system consists of two main receptors: cannabinoid type 1 receptor cannabinoid receptors are found in both the central nervous system (CNS) and periphery, whereas the cannabinoid type 2 receptor cannabinoid receptor is found principally in the immune system and to a lesser extent in the CNS. The EC family consists of two classes of well characterised ligands; the N-acyl ethanolamines, such as N-arachidonoyl ethanolamide or anandamide (AEA), and the monoacylglycerols, such as 2-arachidonoyl glycerol. The various synthetic and catabolic pathways for these enzymes have been (with the exception of AEA synthesis) elucidated. To date, much work has examined the role of EC in nociceptive processing and the potential of targeting the EC system to produce analgesia. Cannabinoid receptors and ligands are found at almost every level of the pain pathway from peripheral sites, such as peripheral nerves and immune cells, to central integration sites such as the spinal cord, and higher brain regions such as the periaqueductal grey and the rostral ventrolateral medulla associated with descending control of pain. EC have been shown to induce analgesia in preclinical models of acute nociception and chronic pain states. The purpose of this review is to critically evaluate the evidence for the role of EC in the pain pathway and the therapeutic potential of EC to produce analgesia. We also review the present clinical work conducted with EC, and examine whether targeting the EC system might offer a novel target for analgesics, and also potentially disease-modifying interventions for pathophysiological pain states.
Pain: Endocannabinoid: AnalgesiaFrom an evolutionary standpoint, pain can be considered a necessary evil, providing a potent warning system to protect an individual from present and future harm. However, not all pain is part of this adaptive response, e.g. persistent pain after injury healing (chronic pain) or pain arising from damage to nerve tissue (neuropathic pain). Pain is the most common complaint in those seeking a physician, and a recent study suggests that pain represents the greatest economic burden of any pathological condition in the USA, with an estimated annual cost of $565-635 billion (1) . Many chronic pain states are refractory to standard analgesics, and even in those which do respond, pain control can be incomplete or only short-term in nature. Of the imperfect currently available analgesics, the most efficacious are the opioids which exploit an endogenous pain control pathway within the central nervous system. However, opioids have significant issues with tolerance, dependence, respiratory depression and opioid-induced hyperalgesia (2) . Over the past few decades, the existence of a second endogenous anti-nociceptive pathway has been revealed: the endocannabinoid (EC) system. *Corresponding author: J. J. Burston, fax +44 (0)115 823 0142, email james.burston@nottingham.ac.uk Abbreviations: 2-AG, 2-arachidonoylglycerol; ACC, anterior cingulate cortex; AEA, anandamide; CB 1 , cannab...