Mouse mammary tumor virus (MMTV) is a complex retrovirus that encodes at least three regulatory and accessory proteins, including Rem. Rem is required for nuclear export of unspliced viral RNA and efficient expression of viral proteins. Our previous data indicated that sequences at the envelope-3 long terminal repeat junction are required for proper export of viral RNA. To further map the Rem-responsive element (RmRE), reporter vectors containing various portions of the viral envelope gene and the 3 long terminal repeat were tested in the presence and absence of Rem in transient transfection assays. A 476-bp fragment that spans the envelope-long terminal repeat junction had activity equivalent to the entire 3-end of the mouse mammary tumor virus genome, but further deletions at the 5-or 3-ends reduced Rem responsiveness. RNase structure mapping of the full-length RmRE and a 3-truncation suggested multiple domains with local base pairing and intervening single-stranded segments. A secondary structure model constrained by these data is reminiscent of the RNA response elements of other complex retroviruses, with numerous local stem-loops and long-range base pairs near the 5-and 3-boundaries, and differs substantially from an earlier model generated without experimental constraints. Covariation analysis provides limited support for basic features of our model. Reporter assays in human and mouse cell lines revealed similar boundaries, suggesting that the RmRE does not require cell typespecific proteins to form a functional structure.
Mouse mammary tumor virus (MMTV)3 has multiple regulatory and accessory genes (1, 2). The known accessory genes specify a dUTPase (3), which is believed to be involved in retroviral replication in non-dividing cells (4), as well as superantigen (Sag). Sag is a transmembrane glycoprotein that is involved in the lymphocyte-mediated transmission of MMTV from maternal milk in the gut to susceptible epithelial cells in the mammary gland (5, 6). The Sag protein expressed by endogenous (germline) MMTV proviruses has been reported to provide susceptibility to infection by exogenous MMTVs or the bacterial pathogen, Vibrio cholerae (7). These results suggest a role for MMTV Sag in the host innate immune response.MMTV recently was shown to be a complex retrovirus (1). Complex retroviruses encode RNA-binding proteins that facilitate nuclear export of unspliced viral RNA by using a leucinerich nuclear export sequence (8), which binds to chromosome region maintenance 1 (Crm1)(9), whereas simple retroviruses have a cis-acting constitutive transport element that directly interacts with components of the Tap/NXF1 pathway (10). Similar to other complex retroviruses, MMTV encodes a Revlike protein, regulator of export/expression of MMTV mRNA (Rem) (1). Rem is translated from a doubly spliced mRNA into a 33-kDa protein that contains nuclear and nucleolar localization signals as well as a predicted RNA-binding motif and leucine-rich nuclear export sequence (1, 2). Our previous experiments indicated that Rem ...