Endotoxemia is marked by a global activation of inflammatory responses, which can lead to shock, multiple organ failure, and the suppression of immune and wound healing processes. Neutrophils (PMNs) play a central role in some of these responses by accumulating in tissues and releasing reactive oxygen species and proteases that injure host structures. This review focuses on altered PMN migratory responses that occur during endotoxemia and their consequences in the development of pulmonary infection. The inflammatory mediators that might be responsible for these altered responses are discussed. The oxidant potential of PMNs is increased after exposure to endotoxin both in vitro and during clinical and experimental endotoxemia. However, other functions such as chemotaxis and phagocytosis are often depressed in these same cells. Endotoxin exposure renders PMNs hyperadhesive to endothelium. The sum of these effects produces activated inflammatory cells that are incapable of leaving the vasculature. As such, the endotoxic PMN is more likely to promote tissue injury from within microvascular beds than to clear pathogens from extravascular sites. Moreover, the functional characteristics of endotoxic PMNs are similar to those observed during trauma, burn injury, sepsis, surgery, and other inflammatory conditions. Accordingly, several clinical conditions might have a common effector in the activated, yet migratorially dysfunctional, PMN. Direct effects of endotoxin on PMNs as well as effects of endogenous mediators released during endotoxemia are discussed. Understanding PMN behavior during endotoxemia may provide basic and critical insights that can be applied to a number of inflammatory scenarios. J. Leukoc. Biol. 66: 10-24; 1999.