SR-BI deficient mice that are also hypomorphic for apolipoprotein E expression develop diet induced occlusive coronary artery atherosclerosis, myocardial infarction and early death. To test the role of SR-BI in bone marrow derived cells, we used bone marrow transplantation to generate SR-BI-null; apoE-hypomorphic mice in which SR-BI expression was restored solely in bone marrow derived cells. SR-BI-null; apoE-hypomorphic mice were transplanted with SR-BI+/+apoE-hypomorphic, or control, autologous SR-BI-null; apoE-hypomorphic bone marrow. Four weeks later, mice were fed a high-fat, high-cholesterol, cholate-containing diet to induce coronary artery atherosclerosis. Mice transplanted with autologous bone marrow developed extensive aortic atherosclerosis and severe occlusive coronary artery atherosclerosis after 4 weeks of feeding. This was accompanied by myocardial fibrosis and increased heart weights. In contrast, restoration of SR-BI expression in bone marrow derived-cells reduced diet induced aortic and coronary artery atherosclerosis, myocardial fibrosis and the increase in heart weights in SR-BI-null; apoE-hypomorphic mice. Restoration of SR-BI in bone marrow derived cells did not, however, affect steady state lipoprotein cholesterol levels, but did reduce plasma levels of IL-6. Monocytes from SR-BI-null mice exhibited a greater capacity to bind to VCAM-1 and ICAM-1 than those from SR-BI+/+ mice. Furthermore, restoration of SR-BI expression in bone marrow derived cells attenuated monocyte recruitment into atherosclerotic plaques in mice fed high fat, high cholesterol cholate containing diet. These data demonstrate directly that SR-BI in bone marrow-derived cells protects against both aortic and CA atherosclerosis.