Background:
The causal associations between statin use and male sex hormone levels and related disorders have not been fully understood. In this study, we employed Mendelian randomization for the first time to investigate these associations.
Methods:
In two-sample Mendelian randomization framework, genetic proxies for hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) inhibition were identified as variants in the HMGCR gene that were associated with both levels of gene expression and low density lipoprotein cholesterol (LDL-C). We assessed the causal relationship between HMGCR inhibitor and 5 sex hormone levels/2 male-related diseases. Additionally, we investigated the association between 4 circulating lipid traits and outcomes. The “inverse variance weighting” method was used as the primary approach, and we assessed for potential heterogeneity and pleiotropy. In a secondary analysis, we revalidated the impact of HMGCR on 7 major outcomes using the summary-data-based Mendelian randomization method.
Results:
Our study found a significant causal association between genetic proxies for HMGCR inhibitor and decreased levels of total testosterone (TT) (LDL-C per standard deviation = 38.7mg/dL, effect = −0.20, 95% confidence interval [CI] = −0.25 to −0.15) and bioavailable testosterone (BT) (effect = −0.15, 95% CI = −0.21 to −0.10). Obesity-related factors were found to mediate this association. Furthermore, the inhibitor were found to mediate a reduced risk of prostate cancer (odds ratio = 0.81, 95%CI = 0.7–0.93) by lowering bioavailable testosterone levels, without increasing the risk of erectile dysfunction (P = .17). On the other hand, there was a causal association between increased levels of LDL-C, total cholesterol, triglycerides (TG) and decreased levels of TT, sex hormone-binding globulin, and estradiol.
Conclusions:
The use of HMGCR inhibitor will reduce testosterone levels and the risk of prostate cancer without the side effect of erectile dysfunction. LDL-C, total cholesterol, and TG levels were protective factors for TT, sex hormone-binding globulin, and estradiol.