Cold atmospheric plasma has been developed and utilized as a novel technique for skin rejuvenation because of its various effects on cells and living things. This study investigated the accuracy of this claim and any possible side effects of using spark plasma to rejuvenate skin. The present work is the first quantitative investigation using animal models. 12 Wistar rats were divided into two groups for this investigation. To compare the skin's natural process with the treated skin, the first group underwent a single session of plasma therapy, while the second group served as the control group. The back of the necks of the samples was shaved for 20 cm. Before beginning treatment, the MPA9 multifunctional skin tester was used to determine the melanin index, erythema index, and transepidermal water loss (TEWL). The skin's thickness and density were assessed using sonography, and its elasticity index was calculated using a Cutometer. The samples were exposed to plasma radiation in the designated area (in a triangular pattern). The abovementioned signs were examined immediately after the following therapy and at the weekly appointment 2–4 weeks later. Optical spectroscopy was also used to demonstrate the presence of active species. In this study, we found that a plasma spark therapy session significantly boosts skin elasticity, and the ultrasound results revealed a significantly increased skin thickness and density. The plasma increased the amount of skin surface evaporation, erythema, and melanin immediately following the treatment. However, 4 weeks later, it recovered to its former state and did not differ significantly from before the therapy.