To explore the microbial community structure and ecological function of mulberry and their potential relationship with the resistance of mulberry, the community structure and function of endophytic fungi in 18 mulberry cultivars were analyzed and predicted by using high-throughput sequencing technology and the FUNGuild database. A total of 352 operational taxonomic units of fungi were observed at a 97% similarity level, representing six phyla of fungi, Fungi_unclassified, Ascomycota, Basidiomycota, Zygomycota, Rozellomycota, and Chytridiomycota. Fungi_unclassified was dominant, and Ascomycota was relatively dominant in all cultivars. At the genus level, Ascomycota_unclassified was dominant, and Ampelomyces was relatively dominant, with a richness in TAIWANCHANGGUOSANG 16.47–8975.69 times that in the other cultivars. Classified Ascomycota_unclassified was 4.75–296.65 times more common in NANYUANSIJI than in the other cultivars. Based on the FUNGuild analysis method, we successfully annotated six nutrient types, namely, pathotroph, pathotroph–saprotroph, pathotroph–saprotroph–symbiotroph, saprotroph, saprotroph–symbiotroph, and symbiotroph, among which saprophytic–symbiotic accounted for the largest proportion and was absolutely dominant in TWC. This research suggests that community composition differs among cultivars and that the diversity and richness of endophytic fungi in resistant cultivars are higher than those in susceptible cultivars. The ecological functions of cultivars with different resistances are quite different.