Streptomycetes are Gram-positive actinobacteria largely represented in the plant root microbiota. The genetic determinants involved in the presence of Streptomyces in the rhizosphere are largely unknown and can rely on the ability to degrade plant-derived compounds such as cell-wall polysaccharides and on the production of specialised metabolites. To address whether Streptomyces strains recruited into root microbiota share genomic specificities related to these two functions, we engaged a comparative genomic analysis using a newly sequenced rhizospheric strain, Streptomyces sp. AgN23 and strains from the phylogenetically related S. violaceusniger clade. This analysis enlightens a shared prominent CAZyome potentially involved in plant polysaccharides degradation and a strong conservation of antimicrobials biosynthetic clusters (rustmicin, mediomycin, niphimycin, nigericin) as well as plant bioactive compounds (nigericin, echosides, elaiophylin). Taken together, our work supports the hypothesis that specific hydrolytic enzymes and specialised metabolites repertoires may play important roles in the development of Streptomyces strains in the rhizosphere.