Backgroud: To examine the effects of short-wavelength blue light (SWBL) on cultured human lens epithelial cells (hLECs). The nosogenesis of cataracts after SWBL exposure was discussed. Methods: HLE-B3 hLECs were divided into 3 groups randomly: A: normal control group, which consisted of hLECs cultured in the dark; B: the caspase-1 inhibitor group; and C: the SWBL exposure group. After the SWBL (2500 lux) irradiation (for 8, 16, 24, and 32 h), the caspase-1 and gasdermin D (GSDMD) expression levels in HLE-B3 hLECs were examined using ELISA, immunofluorescence, and Western blotting analyses. Double-positive staining of HLE-B3 hLECs for activated and inhibited caspase-1 was used to confirm pyroptosis in hLECs by flow cytometry. Results: SWBL can cause cell death in HLE-B3 hLECs, but a caspase-1 inhibitor suppressed cell death. The flow cytometry results also confirmed the does-dependent of short-wavelength blue light irradiation on pyroptotic death of hLECs. Caspase-1 and GSDMD expression levels of all hLECs groups changed with short-wavelength blue light exposure times (8, 16, 24, and 32 h) and were higher in groups B and C than group A. The immunofluorescence results demonstrated that the expression of GSDMD-N was higher in the cell membrane in both the B and C groups than in the A group.Conclusion: The data indicate that SWBL induces pyroptotic programmed cell death by activation of the GSDMD signalling axis in HLE-B3 hLECs. These results provide new insights into the exploitation of new candidates for the prevention of cataracts.