Ubiquitin-conjugating enzyme E2 C (UBE2C) plays a carcinogenic role in gastric cancer (GC); yet, its role in cisplatin (DDP) resistance in GC is enigmatic. This study sought to probe into the impact of UBE2C on DDP resistance in GC and its concrete molecular mechanism in GC progression. Bioinformatics analysis was used to analyze differentially expressed mRNAs and predict upstream regulatory molecules in GC. Real-time quantitative reverse transcriptase polymerase chain reaction and western blot were used to detect the expression of UBE2C and MYB proto-oncogene like 2 (MYBL2). Dual luciferase and chromatin immunoprecipitation (ChIP) assays were used to verify the binding relationship. Cell counting kit-8 was used to detect cell viability and calculate IC50 values. Flow cytometry was used to detect the cell cycle. Comet assay was used to detect DNA damage. Western blot was used to detect the expression of DNA loss-related proteins (γ-H2AX, ATM/p-ATM). The knockdown of highly expressed UBE2C in GC cell lines could reduce cell viability, induce G2/M arrest, induce apoptosis, and promote DNA damage and DDP sensitivity. Bioinformatics analysis predicted that the substantially upregulated MYBL2 was an upstream transcription factor in UBE2C. The binding relationship between the UBE2C promoter region and MYBL2 was verified by dual luciferase and ChIP. Overexpression of UBE2C in the rescue experiment was found to reverse the inhibited GC progression and promoted DDP sensitivity brought by the knockdown of MYBL2. In conclusion, the MYBL2/UBE2C regulatory axis may be a potential way to overcome DDP resistance in GC.