Background and Purpose-Protease-activated receptor-2 (PAR-2) can be activated after proteolysis of the amino terminal of the receptor by trypsin or by synthetic peptides with a sequence corresponding to the endogenous tethered ligand exposed by trypsin (eg, SLIGRL-NH 2 ). PAR-2 mediates nitric oxide (NO)-dependent dilatation in cerebral arteries, but it is unknown whether PAR-2 function is altered in cardiovascular diseases. Since hypertension selectively impairs NO-mediated cerebral vasodilatation in response to acetylcholine and bradykinin, we sought to determine whether PAR-2-mediated vasodilatation is similarly adversely affected by this disease state. Methods-We studied basilar artery responses in Wistar-Kyoto rats (WKY) (normotensive) and spontaneously hypertensive rats (SHR) in vivo (cranial window preparation) and in vitro (isolated arterial rings). The vasodilator effects of acetylcholine, sodium nitroprusside, and activators of PAR-2 and protease-activated receptor-1 (PAR-1) were compared in WKY versus SHR. Immunohistochemical localization of PAR-2 was also assessed in the basilar artery. Results-Increases in basilar artery diameter in response to acetylcholine were 65% to 85% smaller in SHR versus WKY, whereas responses to sodium nitroprusside were not different. In contrast to acetylcholine, vasodilatation in vivo to SLIGRL-NH 2 was largely preserved in SHR, and SLIGRL-NH 2 was Ϸ3-fold more potent in causing vasorelaxation in SHR versus WKY in vitro. In both strains, responses to SLIGRL-NH 2 were abolished by N