One of the challenges in fusion reactors is the discovery of plasma facing materials capable of withstanding extreme conditions, such as radiation damage and high heat flux. Development of fusion materials can be a daunting task since vast combinations of microstructures and compositions need to be explored, each of which requires trial-and-error based irradiation experiments and materials characterizations. Here, we utilize combinatorial experiments that allow rapid and systematic characterizations of composition-microstructure dependent irradiation damage behaviors of nanostructured tungsten alloys. The combinatorial materials library of W-Re-Ta alloys was synthesized, followed by the high-throughput experiments for probing irradiation damages to the mechanical, thermal, and structural properties of the alloys. This highly efficient technique allows rapid identification of composition ranges with excellent damage tolerance. We find that the distribution of implanted He clusters can be significantly altered by the addition of Ta and Re, which play a critical role in determining property changes upon irradiation.