Cooling techniques are essential to understand fundamental thermodynamic questions of the lowenergy states of physical systems, furthermore they are at the core of practical applications of quantum information science. In quantum computing, this controlled preparation of highly pure quantum states is required from the state initialization of most quantum algorithms to a reliable supply of ancilla qubits that satisfy the fault-tolerance threshold for quantum error correction. Heat-bath algorithmic cooling has been shown to purify qubits by controlled redistribution of entropy and multiple contact with a bath, not only for ensemble implementations but also for technologies with strong but imperfect measurements. In this paper, we show that correlated relaxation processes between the system and environment during rethermalization when we reset hot ancilla qubits, can be exploited to enhance purification. We show that a long standing upper bound on the limits of algorithmic cooling Schulman et al (2005 Phys. Rev. Lett. 94, 120501) can be broken by exploiting these correlations. We introduce a new tool for cooling algorithms, which we call 'state-reset', obtained when the coupling to the environment is generalized from individual-qubits relaxation to correlated-qubit relaxation. Furthermore, we present explicit improved cooling algorithms which lead to an increase of purity beyond all the previous work, and relate our results to the Nuclear Overhauser Effect.