This paper extends the knowledge into the mechanical behaviour characterizations and constitutive modelling of polyethylene (PE) foam under multiple loading and unloading. The mechanical properties of PE foam subjected to single loading cases can be obtained by uniaxial compressive tests at quasi‐static and dynamic states. And the multiple loading and unloading behaviours of the foam can be revealed by consecutive drop tests. The major objective of this research is to propose a phenomenological model consists of shape function and modulus function, which can be predicted compressive response of PE foam for single loading cases. The constitutive models of foamed PE under multiple loading and unloading conditions are established by both using hyperbolic function, where the relations between coefficients and residual strain are introduced. And then, experiments are conducted to validate the proposed model by comparing the constitutive models proposed in this paper and those predicting by finite element software ABAQUS with those by experiments, showing that the proposed models are more accurate for predicting acceleration‐times curves of multiple drop scenarios.