This paper is devoted to the numerical solution of constrained energy minimization problems arising in computational physics and chemistry such as the Gross–Pitaevskii and Kohn–Sham models. In particular, we introduce Riemannian Newton methods on the infinite-dimensional Stiefel and Grassmann manifolds. We study the geometry of these two manifolds, its impact on the Newton algorithms, and present expressions of the Riemannian Hessians in the infinite-dimensional setting, which are suitable for variational spatial discretizations. A series of numerical experiments illustrates the performance of the methods and demonstrates their supremacy compared to other well-established schemes such as the self-consistent field iteration and gradient descent schemes.