Thermal stress is a major source of oxidative damage in the broiler chicken (Gallus gallus domesticus) due to the latter鈥檚 impaired metabolic function. While heat stress has been extensively studied in broilers, the effects of cold stress on broiler physiologic and oxidative function are still relatively unknown. The present study aimed to understand how thermal manipulation (TM) might affect a broiler鈥檚 oxidative response to post-hatch thermal stress in terms of the mRNA expression of the catalase, NADPH oxidase 4 (NOX4), and superoxide dismutase 2 (SOD2) genes. During embryonic days 10 to 18, TM was carried out by raising the temperature to 39 掳C at 65% relative humidity for 18 h/day. To induce heat stress, room temperature was raised from 21 to 35 掳C during post-hatch days (PD) 28 to 35, while cold stress was induced during PD 32 to 37 by lowering the room temperature from 21 to 16 掳C. At the end of the thermal stress periods, a number of chickens were euthanized to extract hepatic and splenic tissue from the heat-stressed group and cardiac, hepatic, muscular, and splenic tissue from the cold-stressed group. Catalase, NOX4, and SOD2 expression in the heart, liver, and spleen were decreased in TM chickens compared to controls after both cold and heat stress. In contrast, the expression levels of these genes in the breast muscles of the TM group were increased or not affected. Moreover, TM chicks possessed an increased body weight (BW) and decreased cloacal temperature (TC) compared to controls on PD 37. In addition, TM led to increased BW and lower TC after both cold and heat stress. Conclusively, our findings suggest that TM has a significant effect on the oxidative function of thermally stressed broilers.