One major challenge confronting absorptive CO 2 capture is its high energy requirement, especially during stripping and sorbent regeneration. To proffer solution to this challenge, heat and mass integration which has been identified as a propitious method to minimize energy and material consumption in many industrial applications has been proposed for application during CO 2 capture. However, only a few review articles on this important field are available in open literature especially for carbon capture, storage and utilization studies. In this article, a review of recent progress on heat and mass integration for energy and material minimization during CO 2 capture which brings to light what has been accomplished till date and the future outlook from an industrial point of view is presented. The review elucidates the potential of heat and mass exchanger networks for energy and resource minimization in CO 2 capture tasks. Furthermore, recent developments in research on the use of heat and mass exchanger networks for energy and material minimization are highlighted. Finally, a critical assessment of the current status of research in this area is presented and future research topics are suggested. Information provided in this review could be beneficial to researchers and stakeholders working in the field of energy exploration and exploitation, environmental engineering and resource utilization processes as well as those doing a process synthesis-inclined research.