Large-scale parallel disk systems are frequently used to meet the demands of information systems requiring high storage capacities. A critical problem with these large-scale parallel disk systems is the fact that disks consume a significant amount of energy. To design economically attractive and environmentally friendly parallel disk systems, we developed two energy-aware prefetching strategies for parallel disk systems with disk buffers. First, we introduce a new buffer disk architecture that can provide significant energy savings for parallel disk systems while achieving high performance. Second, we design a prefetching approach to utilize an extra disk to accommodate prefetched data sets that are frequently accessed. Third, we develop a second prefetching strategy that makes use of an existing disk in the parallel disk system as a buffer disk. Compared with the first prefetching scheme, the second approach lowers the capacity of the parallel disk system. However, the second approach is more cost-effective and energy-efficient than the first prefetching technique. Finally, we quantitatively compare both of our prefetching approaches against two conventional strategies including a dynamic power management technique and a non-energy-aware scheme. Using empirical results we show that our novel prefetching approaches are able to reduce energy dissipation in parallel disk systems by 44% and 50% when compared against a non-energy aware approach. Similarly, our strategies are capable of conserving 22% and 30% of the energy when compared to the dynamic power management technique.