Energy-Aware MPTCP Scheduling in Heterogeneous Wireless Networks Using Multi-Agent Deep Reinforcement Learning Techniques
Zulfiqar Ali Arain,
Xuesong Qiu,
Changqiao Xu
et al.
Abstract:This paper proposes an energy-efficient scheduling scheme for multi-path TCP (MPTCP) in heterogeneous wireless networks, aiming to minimize energy consumption while ensuring low latency and high throughput. Each MPTCP sub-flow is controlled by an agent that cooperates with other agents using the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm. This approach enables the agents to learn decentralized policies through centralized training and decentralized execution. The scheduling problem is mo… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.