Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This paper presents an analysis of the performance of the Energy Aware Scheduling Algorithm (EASA) in a 5G green communication system. 5G green communication systems rely on EASA to manage resource sharing. The aim of the proposed model is to improve the efficiency and energy consumption of resource sharing in 5G green communication systems. The main objective is to address the challenges of achieving optimal resource utilization and minimizing energy consumption in these systems. To achieve this goal, the study proposes a novel energy‐aware scheduling model that takes into consideration the specific characteristics of 5G green communication systems. This model incorporates intelligent techniques for optimizing resource allocation and scheduling decisions, while also considering energy consumption constraints. The methodology used involves a combination of mathematical analysis and simulation studies. The mathematical analysis is used to formulate the optimization problem and design the scheduling model, while the simulations are used to evaluate its performance in various scenarios. The proposed EASM reached a 91.58% false discovery rate, a 64.33% false omission rate, a 90.62% prevalence threshold, and a 91.23% critical success index. The results demonstrate the effectiveness of the proposed model in terms of reducing energy consumption while maintaining a high level of resource utilization.
This paper presents an analysis of the performance of the Energy Aware Scheduling Algorithm (EASA) in a 5G green communication system. 5G green communication systems rely on EASA to manage resource sharing. The aim of the proposed model is to improve the efficiency and energy consumption of resource sharing in 5G green communication systems. The main objective is to address the challenges of achieving optimal resource utilization and minimizing energy consumption in these systems. To achieve this goal, the study proposes a novel energy‐aware scheduling model that takes into consideration the specific characteristics of 5G green communication systems. This model incorporates intelligent techniques for optimizing resource allocation and scheduling decisions, while also considering energy consumption constraints. The methodology used involves a combination of mathematical analysis and simulation studies. The mathematical analysis is used to formulate the optimization problem and design the scheduling model, while the simulations are used to evaluate its performance in various scenarios. The proposed EASM reached a 91.58% false discovery rate, a 64.33% false omission rate, a 90.62% prevalence threshold, and a 91.23% critical success index. The results demonstrate the effectiveness of the proposed model in terms of reducing energy consumption while maintaining a high level of resource utilization.
The real world applications are more prone to difficulties of challenges due to fast growth of technologies and inclusion of artificial intelligence (AI) based logical solutions. The massive internet-of-things (IoT) devices are involved in number of Industry 5.0 applications like smart healthcare, smart manufacturing, smart agriculture, smart transportation. Advanced wireless techniques, customization of services and different technologies are experiencing a major transformation. The desire to increase the communication reliability without adding energy overhead is the major challenge for massive IoT enabled networks. To cope up with the above challenges, Industry 5.0 requirements needs to be monitored at the remote level which again adds on the communication challenge. Use of relays in 6G based wireless networks is denied due to high requirement of energy. Therefore in this paper, Intelligent reflecting surfaces (IRSs) assisted energy constrained 6G wireless networks are studied. To provide seamless connection between the communicating mobile nodes, IRS with an array of reflecting elements are configured in the system set up. A use-case scenario of IRS enabled network in Internet-of-Underwater things (IoUT) for smart ocean transportation is also provided. The IRS assisted wireless network is evaluated for target rates achieved. A power consumption model of the IRS supported system is also proposed to optimise the energy efficiency of the system. Further, the paper evaluates the impact of number of reflecting elements N on the IRS and the phase resolution b of each element on the system performance. The energy efficiency improves by 20% for IRS with $$N=100$$ N = 100 with $$b=2$$ b = 2 over IRS with $$b=1$$ b = 1 .
The 6th generation of wireless mobile networks is emerging as a paradigm shifting successor to unifying the experience across the physical, digital, and human worlds, pushing boundaries on performance in capacity, throughput, latency, scalability, flexibility, and reliability, while prominently addressing new major factors, including sustainability, security and privacy, as well as digital inclusion. Many research institutions and initiatives worldwide have started investigations to make 6G a reality by approximately 2030. In Germany, federal funding from the German Ministry of Education and Research (BMBF) supports a largescale 6G initiative, with its lighthouse project, called 6G-ANNA. The core aim of this project is to develop the key aspects of a holistic, sustainable, secure, and resilient 6G system design that will simplify and improve the interaction between humans, digital assets, and the physical environment. This paper shares the vision of the project's main technical working areas and advances, spanning topics from radio access, integration of multiple networks, as well as automation and simplification in networking to new applications and testbed scenarios, including real-time digital twins and extended reality. The industrial impact and relevance of standardization makes 6G-ANNA uniquely positioned to lead and realize the vision of next-generation wireless mobile network technologies, systems, and applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.