Abstract:In this paper, we propose two energy-aware scheduling algorithms---(1) Reinforcement learning-based multiprocessor scheduling (RL) algorithm and (2) Mathematical morphology multiprocessor scheduling (MMS) algorithm---for scheduling time-constrained Directed Acyclic Graph (DAG) tasks in an embedded multiprocessor system with Dynamic Voltage And Frequency Scaling (DVFS) and Dynamic Power Management (DPM) technology. Unlike other heuristic scheduling algorithms, the proposed reinforcement learning (RL) is a machi… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.