This paper presents experimental and numerical investigations on the progressive collapse behavior of a two-story glulam frame when the middle column is exposed to ISO834 standard fire. The stress characteristics, temperature distributions, and deformation relationship curves of the bottom middle column after a fire are obtained. The collapse resistance performance and the mechanism of the glulam structure under local fire are studied in combination with the failure mode of the frame. The experimental results show that the failure time of the middle column in fire is 16.8 min, and the time to determine the progressive collapse of the structure is 17.17 min when the rotation angle exceeds the limit. The structure can remain stable for some time after the failure of the fire column, but as the fire continues to spread, the structure will collapse further. In addition, a temperature-field analysis model with the grid element type of DC3D8 and a structural field analysis model with the grid element type of C3D8R was established by using ABAQUS software under the experimental conditions. The numerical simulation is carried out by means of thermal–mechanical sequential coupling. The numerical simulation results show that the temperature of the beam end rose to more than 300 °C in about 15 min although it was not directly exposed to fire. The temperature of the whole connector at the pillar foot in the bottom column reached more than 700 °C when the fire time reached 60 min. The numerical simulation results agree well with the experimental results. The analysis results show that, in the failure process of the fire column, the junction of beam ends begins to produce stretching force to form a catenary effect. As the fire time increases, the catenary effect eventually fails. The stretching force at the beam end rapidly decreases and withdraws from the work, causing the progressive collapse of the frame.