We consider the 0-order perturbed Lamé operator −∆ * +V (x). It is well known that if one considers the free case, namely V = 0, the spectrum of −∆ * is purely continuous and coincides with the non-negative semi-axis. The first purpose of the paper is to show that, at least in part, this spectral property is preserved in the perturbed setting. Precisely, developing a suitable multipliers technique, we will prove the absence of point spectrum for Lamé operator with potentials which satisfy a variational inequality with suitable small constant. We stress that our result also covers complex-valued perturbation terms. Moreover the techniques used to prove the absence of eigenvalues enable us to provide uniform resolvent estimates for the perturbed operator under the same assumptions about V .