EPFL Figure 1: We propose a new "projection-based" implicit Euler integrator that supports a large variety of geometric constraints in a single physical simulation framework. In this example, all the elements including building, grass, tree, and clothes (49k DoFs, 43k constraints), are simulated at 3.1ms/iteration using 10 iterations per frame (see also accompanying video).
AbstractWe present a new method for implicit time integration of physical systems. Our approach builds a bridge between nodal Finite Element methods and Position Based Dynamics, leading to a simple, efficient, robust, yet accurate solver that supports many different types of constraints. We propose specially designed energy potentials that can be solved efficiently using an alternating optimization approach. Inspired by continuum mechanics, we derive a set of continuumbased potentials that can be efficiently incorporated within our solver. We demonstrate the generality and robustness of our approach in many different applications ranging from the simulation of solids, cloths, and shells, to example-based simulation. Comparisons to Newton-based and Position Based Dynamics solvers highlight the benefits of our formulation.