Abstract-We analyze the area energy efficiency (AEE) of spatial multiplexing (SM) and transmit antenna selection (TAS), considering a realistic power consumption model for small base stations (BSs), which includes the power consumed by the backhaul as well as different interference attenuation levels. Our results show an optimum number of BSs for each technique that maximizes the AEE. Moreover, we also show that TAS has a larger AEE than SM when the demand for system capacity is low, while SM becomes more energy efficient when the demanded capacity is larger. Additionally, when the capacity demand and the area to be covered are fixed, the number of BSs needed to be deployed is smaller for SM than for the other techniques. Finally, the system performance in terms of AEE is shown to be strongly dependent on the amount of interference, which in turn depends on the employed interference-mitigation scheme, and on the employed power consumption model.