Wireless Sensor Networks (WSNs) can benefit from ad hoc networking technology characterized by multihop wireless connectivity and infrastructure less framework. These features make them suitable for next-generation networks to support several applications such M2M applications for smart cities and public safety scenarios. Pivotal design requirements for these scenarios are energy efficiency, since many of these devices will be battery powered placing a fundamental limit on network, and specifically node lifetime. Moreover, the way in which traffic is managed also influences network lifetime, since there is a high probability for some nodes to become overloaded by packet forwarding operations in order to support neighbour data exchange. These issues imply the need for energy efficient and load balanced routing approaches that can manage the network load and not only provide reduced energy consumption on the network but also prolong the network lifetime providing robust and continuous. This work proposes a new energy efficient and traffic balancing routing approach that can provide a weighted and flexible trade-off between energy consumption and load dispersion. Simulation results show that the proposed protocol achieves high energy efficiency, decreases the percentage of failed nodes due to lack of battery power, and extends the lifespan of the network.