Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Optimizing agricultural productivity and promoting sustainability necessitates accurate predictions of crop yields to ensure food security. Various agricultural and climatic variables are included in the analysis, encompassing crop type, year, season, and the specific climatic conditions of the Indian state during the crop’s growing season. Features such as crop and season were one-hot encoded. The primary objective was to predict yield using a deep neural network (DNN), with hyperparameters optimized through genetic algorithms (GAs) to maximize the R2 score. The best-performing model, achieved by fine-tuning its hyperparameters, achieved an R2 of 0.92, meaning it explains 92% of the variation in crop yields, indicating high predictive accuracy. The optimized DNN models were further analyzed using explainable AI (XAI) techniques, specifically local interpretable model-agnostic explanations (LIME), to elucidate feature importance and enhance model interpretability. The analysis underscored the significant role of features such as crops, leading to the incorporation of an additional dataset to classify the most optimal crops based on more detailed soil and climate data. This classification task was also executed using a GA-optimized DNN, aiming to maximize accuracy. The results demonstrate the effectiveness of this approach in predicting crop yields and classifying optimal crops.
Optimizing agricultural productivity and promoting sustainability necessitates accurate predictions of crop yields to ensure food security. Various agricultural and climatic variables are included in the analysis, encompassing crop type, year, season, and the specific climatic conditions of the Indian state during the crop’s growing season. Features such as crop and season were one-hot encoded. The primary objective was to predict yield using a deep neural network (DNN), with hyperparameters optimized through genetic algorithms (GAs) to maximize the R2 score. The best-performing model, achieved by fine-tuning its hyperparameters, achieved an R2 of 0.92, meaning it explains 92% of the variation in crop yields, indicating high predictive accuracy. The optimized DNN models were further analyzed using explainable AI (XAI) techniques, specifically local interpretable model-agnostic explanations (LIME), to elucidate feature importance and enhance model interpretability. The analysis underscored the significant role of features such as crops, leading to the incorporation of an additional dataset to classify the most optimal crops based on more detailed soil and climate data. This classification task was also executed using a GA-optimized DNN, aiming to maximize accuracy. The results demonstrate the effectiveness of this approach in predicting crop yields and classifying optimal crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.