This paper presents a framework to activate and deactivate micronodes in a heterogeneous multicell LTE network, based on load and energy efficiency consideration. The framework exploits historical data (i.e., per-macro-cell load curves) to select a set of candidate switch-on/switch-off instants of microcells, assuming a limited number of state changes is allowed in a day. The switching instants are instead determined online, by taking into account the actual traffic as well as the load curves. Moreover, intercell interference is fully accounted for. Our simulations show that this framework allows a multicell network to sustain peak-hour load when necessary and to reconfigure to a minimum coverage baseline whenever feasible, thus saving power (up to 25% in our scenarios). Moreover, the framework is robust, meaning that deviations of the actual traffic with respect to the prediction offered by the load curves can easily be handled.