The design and functional verification of the 4-phase adiabatic logic implementation take longer due to the complexity of synchronizing the power-clock phases. Additionally, as the adiabatic system scales, the amount of time in debugging errors increases, thus, increasing the overall design and verification time. This paper proposes a VHDL-based modelling approach for speeding up the design and verification time of the 4-phase adiabatic logic systems. The proposed approach can detect the functional errors, allowing the designer to correct them at an early design stage, leading to substantial reduction of the design and debugging time. The originality of this approach lies in the realization of the trapezoidal power-clock using function declaration for the four periods namely; Evaluation (E), Hold (H), Recovery (R) and Idle (I) exclusively. The four periods are defined in a VHDL package followed by a library design which contains the behavioral VHDL model of adiabatic NOT/BUF logic gate. Finally, this library is used to model and verify the structural VHDL representations of the 4-phase 2-bit ringcounter and 3-bit up-down counter, as design examples to demonstrate the practicality of the proposed approach.