In this paper, the energy consumption of high speed access services up to 1 Gb/s per customer is estimated for different passive optical network (PON) technologies. While other studies on PON power consumption typically assume a fixed split ratio, we also consider a greenfield approach, where the split ratio can be optimized for each technology, taking full advantage of its capacity and reach. The split ratio optimization takes into account Quality of Service (QoS) in terms of bandwidth availability and packet loss for triple-play services (voice, television and Internet). This paper includes an in-depth discussion of our split ratio dimensioning approach and our power consumption model for an optical access network in a major city. The obtained results show that statistical gain provided by dynamic bandwidth allocation as well as power splitting ratio optimization in PONs are key factors for achieving energy efficiency. For access rates up to 900 Mb/s, XG-PON1 turns out to be the most energy efficient option. For higher access rates up to 1 Gb/s, the optimal technology depends on split ratio restrictions. If an existing optical distribution network (ODN) with split ratio 1:64 is used, XG-PON1 remains the most energy efficient technology. If higher split ratios up to 1:256 can be achieved, TWDM PON becomes the most energy efficient solution for access rates up to 1 Gb/s.