Abstract-Wireless sensor networks (WSNs) have become a popular research area that is widely gaining the attraction from both the researchers and the practitioner communities due to their wide area of applications. These include real time sensing for audio delivery, imaging, video streaming, environmental monitoring, industrial applications and remote monitoring. WSNs are constrained with limited energy due to their physical size. In order to maximize network lifetime, efficient use of limited sensor nodes energy resources is important. Energy efficient routing protocol for maximum lifetime in wireless sensor networks (EERPM) is proposed. Sensor nodes lifetime optimization models are formulated subject to energy consumption constraint, data flow conservation constraint, maximum data rate constraint and link capacity constraint. The models are used to solve mathematical models for the maximum lifetime routing problems. Sensor nodes transmit their data packets based on the link capacity that is inference free among the sets of links. Moreover, algorithms are developed for coverage of sensor nodes and maximization of lifetime for sensor nodes. Simulation results show that EERPM performs better than MLCS, MLCAL and AEEC protocols. It can reduce data gathering latency and achieve load balancing. Finally, the proposed method extends network lifetime compared to the related selected protocols.