Energy consumption by distribution warehouses has become an essential component of green warehousing and research on reducing the carbon footprint of supply chains. Energy consumption in warehousing is a complex and multilayered problem, which is generally considered in the literature in relation to its detailed components, not as part of comparative studies. In this article, the authors consider six cross-sectional variants of warehouse technology, from manual to fully automatic, and analyze the energy consumption of a warehouse in various configurations. A methodology for estimating storage space and determining energy consumption is proposed. The energy balance of the warehouse variants includes energy for material handling equipment operation, energy consumption for building maintenance (heating, cooling, lighting, etc.), and energy generated by the photovoltaic system on the roof. Then, the operational costs of the variants are estimated and, on their basis, an automation index is determined. The index allows for a comparative analysis of energy consumption and the mechanization and automation of a warehouse. It is shown that a significant part of the energy is spent on maintaining a warehouse building, especially in the case of facilities with a low degree of automation.