The existence of fins on a basin's flat absorber undoubtedly enhances the thermal efficiency and distillate output by increasing the exposed surface area of water to sunlight. However, the issue of shading caused by the fins hampers the productivity of distillers. Researchers are currently seeking a resolution to this problem. The current study conducted a performance comparison of hemispherical solar distillers using copper conical fins with a diameter of 4 cm and a height of 2 cm. The distillers were also equipped with copper conical fins‐filled red bricks, which were painted black. These fins were placed on the bottom of the basin at various spacing intervals (0, 1, and 2 cm) and a water depth of 2 cm. The experimental data showed that the productivity values of the hemispherical solar distiller using copper conical fins (HSD‐CCF) were 6.00, 5.40, and 5.00 L/m2, while the productivity values of the hemispherical solar distiller using copper conical fins‐filled with red bricks (HSD‐CCF & RB) were 7.00, 6.30, and 5.80 L/m2 at spacing distances of 0, 1, and 2 cm, respectively. The conventional hemispherical solar distiller without fins (CHSD) achieved a peak efficiency of 4.50 L/m2. The HSD‐CCF achieves cumulative yields of 33.33%, 20.00%, and 11.11% when utilizing copper conical fins at spacing distances of 0, 1, and 2 cm, respectively, compared to the THSD. The efficiency of the hemispherical sun distiller using copper conical fins‐filled with red bricks (HSD‐CCF & RB) is enhanced by 55.55%, 40.00%, and 28.89% when compared to the conventional hemispherical solar distiller (THSD), at spacing distances of 0, 1, and 2 cm, respectively. The study discovered that including copper conical fins packed with red bricks improves the efficiency of solar distillers. Furthermore, the study revealed that increasing the spacing between the fins further reduces shading, hence enhancing performance.