As global demand for freshwater grows, seawater desalination has become one of the most promising methods for obtaining freshwater. Many coastal nations have included it in their sustainable development plans and are actively advancing related technologies. Compared with traditional desalination methods, such as distillation and membrane-based desalination, seawater freezing desalination offers the benefit of producing large amounts of freshwater at lower costs. This study provides an overview of the main methods and principles of seawater freezing desalination and summarizes the latest research progress. This paper also discusses experimental and simulation studies of different principles. Current research shows that both direct and indirect seawater freezing desalination technologies have become relatively mature, laying a foundation for practical applications. Hydrate-based desalination, eutectic freezing technology, and vacuum freezing technology offer cost-reduction benefits, but existing technologies have limitations, making these areas hot topics in research. Additionally, this paper discusses the experimental progress and simulation methods associated with this, elaborates upon, and analyzes the freezing crystallization process and desalination efficiency from the perspective of the bottom layer of crystal growth, offering valuable insights for future research. It concludes by summarizing and predicting the development of these technologies, emphasizing their great potential due to their low-cost and sustainable features.