The topological approach has recently been successfully employed to investigate timelike circular orbits for massive neutral test particles in the black hole backgrounds. The observed vanishing topological number implies that these timelike circular orbits occur in pairs. However, the behavior of charged test particles in this regard remains unexplored. To address this issue, our study focuses on examining the influence of particle charge on the topology of timelike circular orbits within a spherically symmetrical black hole spacetime holding a nonvanishing radial electric field. We consider four distinct cases based on the charges of the particle and the black hole: unlike strong charge, unlike weak charge, like weak charge, and like strong charge. For each case, we calculate the corresponding topological number. Our results reveal that when the charge is large enough, the topological number takes a value of -1 instead of 0, which differs from the neutral particle scenario. Consequently, in cases of small charges, the timelike circular orbits appear in pairs, whereas in cases of larger charges, an additional unstable timelike circular orbit emerges. These findings shed light on the influence of the particle charge on the topological properties and number of timelike circular orbits.