In the context of the Energy Internet, customers are supplied by energy hubs (EH), while the EHs are interconnected through an upper-level transmission system. In this paper, a stochastic scheduling model is proposed for the interconnected EHs considering integrated demand response (DR) and wind variation. The whole integrated energy system (IES) is linearly modeled for the first time. The output-input relationship within the energy hub is denoted as a linearized matrix, while the upper-level power and natural gas transmission systems are analyzed through piecewise linearization method. A novel sequential linearization method is further proposed to balance computational efficiency and approximation accuracy. Integrated demand response is introduced to smooth out demand curve, considering both internal DR achieved by the optimal energy conversion strategy within energy hubs, and external DR achieved by demand adjustment on the customer’s side. Distributed energy storage like natural gas and heat storage are considered to provide buffer for system operation. The proposed stochastic model is solved by scenario-based optimization with a backward scenario reduction strategy. Numerical tests on a three-hub and seventeen-hub interconnected system that validates the effectiveness of the proposed scheduling model and solution methodology.