Network energy has been conceptualized based on structural balance theory in the physics of complex networks. We utilized this framework to assess the energy of functional brain networks under cognitive control and to understand how energy is allocated across canonical functional networks during various cognitive control tasks. We extracted network energy from functional connectivity patterns of subjects who underwent fMRI scans during cognitive tasks involving working memory, inhibitory control, and cognitive flexibility, in addition to task-free scans. We found that the energy of the whole-brain network increases when exposed to cognitive control tasks compared to the task-free resting state, which serves as a reference point. The brain selectively allocates this elevated energy to canonical functional networks; sensory networks receive more energy to support flexibility for processing sensory stimuli, while cognitive networks relevant to the task, functioning efficiently, require less energy. Furthermore, employing network energy, as a global network measure, improves the performance of predictive modeling, particularly in classifying cognitive control tasks and predicting chronological age. Our results highlight the robustness of this framework and the utility of network energy in understanding brain and cognitive mechanisms, including its promising potential as a biomarker for mental conditions and neurological disorders.